skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Persson, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 31, 2026
  2. Free, publicly-accessible full text available January 12, 2026
  3. We describe a randomized algorithm for producing a near-optimal hierarchical off-diagonal low-rank (HODLR) approximation to an n × n matrix A, accessible only though matrix-vector products with A and AT. We prove that, for the rank-k HODLR approximation problem, our method achieves a (1 + β )log(n )-optimal approximation in expected Frobenius norm using O (k log(n )/β3) matrix-vector products. In particular, the algorithm obtains a (1 + ∈ )-optimal approximation with O (k log4(n )/∈3) matrix-vector products, and for any constant c, an nc-optimal approximation with O (k log(n )) matrix-vector products. Apart from matrix-vector products, the additional computational cost of our method is just O (n poly(log(n ), k, β )). We complement the upper bound with a lower bound, which shows that any matrix-vector query algorithm requires at least Ω(k log(n ) + k/ε ) queries to obtain a (1 + ε )-optimal approximation. Our algorithm can be viewed as a robust version of widely used “peeling” methods for recovering HODLR matrices and is, to the best of our knowledge, the first matrix-vector query algorithm to enjoy theoretical worst- case guarantees for approximation by any hierarchical matrix class. To control the propagation of error between levels of hierarchical approximation, we introduce a new perturbation bound for low-rank approximation, which shows that the widely used Generalized Nyström method enjoys inherent stability when implemented with noisy matrix-vector products. We also introduce a novel randomly perforated matrix sketching method to further control the error in the peeling algorithm. 
    more » « less
    Free, publicly-accessible full text available January 12, 2026